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Abstract

Accurate estimation of biochar carbon permanence is essential for assessing its effectiveness as a carbon dioxide
removal (CDR) strategy. The widely adopted framework, based on the two-pool carbon exponential decay model,
forms the basis of policy guidelines and national CDR accounting. However, our re-analysis of the meta-data used

in this model reveals significant deficiencies in its parameterization, leading to two critical issues. First, the current
parameterization assigns a disproportionally low percentage of the labile carbon fraction (C1) relative to the recalci-
trant fraction (C2), effectively reducing the model to a single-pool approach. Due to the limited duration of incuba-
tion experiments, the decay constant of the labile fraction is incorrectly applied to the entire biochar mass, resulting
in a considerable overestimation of the biochar decay rate. Second, our analysis reveals a lack of causal correlation
between the assigned proportions of C1 and C2 and key carbonization parameters such as production temperature
and hydrogen-to-carbon (H/C) ratios, suggesting that the model does not accurately represent the underlying chem-
istry. This misalignment contradicts the established relationship between increased biochar stability and a higher
degree of carbonization. Consequently, the the parameterization of current model may not adequately reflect the car-
bon sequestration potential of biochar. While a multi-pool decay model is suitable for predicting the permanence

of biochar, the primary issue with the current model lies in its parameterization rather than its structure. To address
these limitations, we recommend that future research prioritize the development of a revised multi-pool decay
model with improved parameterization, supported by empirical decomposition data from a variety of experimental
methods, including incubation studies, accelerated aging experiments, and comprehensive physicochemical charac-
terization. This refined approach will improve the accuracy of biochar permanence estimations, strengthening its role
in global carbon management strategies.

Highlights

- Reassessment of biochar decay model reveals key parameterization deficiencies.

- Current model substantially overestimates biochar decay rates.

- Model misaligns with the chemistry underlying the decay behavior of biochar.

- New decay models for biochar permanence need improved parametrization.

- Enhanced model aims to strengthen biochar’s role in carbon management strategies.
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1 Introduction

The permanence of biochar carbon in soil is a crucial
factor in its efficacy as a climate change mitigation strat-
egy (Woolf et al. 2021; Lehmann et al. 2015, 2021; Lefe-
bvre et al. 2023). Over the past two decades, extensive
research has been conducted on biochar carbon perma-
nence, primarily through laboratory incubation experi-
ments (Major et al. 2010; Zimmerman 2010; Singh et al.
2012; Zimmerman and Gao 2013; Fang et al. 2014, 2019;
Herath et al. 2015; Kuzyakov et al. 2014; Dharmakeerthi
et al. 2015; Wu et al. 2016; Budai et al. 2016). These con-
trolled studies minimize the risk of biochar loss through
erosion, enabling precise measurements of biochar deg-
radation rates over time (Wang et al. 2016).

The standard methodology involves mixing biochar
with soil in an incubation chamber at a constant tem-
perature, capturing the CO, released, and using carbon
isotope analysis to distinguish between carbon released
from the biochar and the soil (IBI 2013; Camps-Arbestein
et al. 2015; Lehmann et al. 2015; Whitman et al. 2015).
Empirical data from these studies provide cumulative
carbon loss of biochar over various time intervals, which
are then used to fit mathematical functions, most com-
monly exponential decay functions (Woolf et al. 2021;
Lehmann et al. 2015, 2021; Wang et al. 2016; Ogle et al.
2006; Azzi et al. 2024). These functions project the ongo-
ing decay rate to predict biochar carbon loss over specific
future periods. To ensure comparability across differ-
ent experiments, the decay constant from each study is
adjusted to the average global soil temperature of 14.9 °C
(Woolf et al. 2021; Lehmann et al. 2015, 2021).

The results from these incubation experiments, along-
side associated mathematical modeling processes, are
extensively reviewed in academic literature. These stud-
ies form the basis for methodologies used by the IPCC
(Ogle et al. 2006) to integrate biochar into national emis-
sion inventories. Woolf et al. (2021) aimed to refine the
IPCC biochar methodology by incorporating additional
analyses from existing scientific literature and introduc-
ing more parameterization options for estimating bio-
char permanence, henceforth the “Woolf’s model. Their
approach involved a meta-analysis and curve fitting
based on incubation study results, providing estimates
of the fraction of biochar carbon remaining in soil (F,,)
after 100, 500, and 1000 years. This methodology is also
utilized by several biochar certification programs, includ-
ing Puro.earth, Verra VCS, and Riverse (Puro.earth 2024;
Verra 2023; Riverse 2013).

In this study, we critically re-examined the metadata
and methods presented by Woolf et al. (2021) to assess
the validity of the prevalent certification approach for
biochar as a CDR strategy. We discussed the limitations
of this method and underscored the necessity for refining
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the Woolf’s model to enhance the accuracy of biochar
permanence estimation, thereby strengthening the role of
biochar in global carbon management strategies.

2 Examining carbon pool parameterization

in the 'two-pool’ model
The rationale for using the double exponential model, or
“two-pool model,” in Woolf’s meta-analysis, as well as in
studies by Lehmann et al. (2015, 2021), Ogle et al. (2006),
and Azzi et al. (2024), is grounded in the widely accepted
understanding that biochar is composed of a mixture of
both aliphatic and aromatic organic compounds. The
larger aromatic structures are generally more persistent
than the aliphatic ones. As a result, it is advocated that
biochar decomposition is more accurately described
using a multi-pool decay function rather than a single-
pool model, to better reflect the heterogeneous composi-
tional chemistry of biochar.

The Woolf et al. (2021) meta-analysis of incubation
results explicitly recommends a minimum of a two-pool
exponential model, consistent with other works preced-
ing and following theirs (Singh et al. 2012, 2015; Rod-
rigues et al. 2023). In Woolf’s model, the first carbon
fraction (C1) corresponds to the labile/aliphatic fraction
and exhibits a higher decay rate (K1 decay constant),
while the second carbon pool (C2) corresponds to the
recalcitrant/aromatic fraction and demonstrates a lower
decay rate (K2 decay constant).

Woolf’s meta-analysis also includes a small subset of
six decay series modeled with a three-pool exponential
model (Herath et al. 2015; Kuzyakov et al. 2014), which is
outside the scope of our discussion.

An examination of Woolf’s meta-analysis (presented in
Woolf et al. (2021) supplementary information) reveals
that the carbon content in biochar is divided such that
the relative proportion of C1 to C2 is minimal, effectively
rendering the impact of C1 in their "two-pool” model
insignificant. Across the dataset, the median value of C1
is 0.6%, while the median C2 fraction is 99.4%.

Figure 1 compares the estimated F, (fraction of
carbon remaining after 100 years) based on the incuba-
tion metadata reported by Woolf et al. (2021) using their
two-pool model, with F,,,, calculations in which the C1
carbon pool is intentionally set to zero. This comparison
highlights the effect of minimizing the C1 fraction within
the two-pool model. The results show that both sets of
estimates align closely with the parity line, indicating
that, although Woolf’s model claims to represent a "two-
pool’ exponential decay, it is effectively governed by the
decay of a single carbon pool within the biochar.

The division of biochar carbon into C1 and C2 pools
in Woolf’s model was primarily undertaken to facilitate
curve fitting, with the objective of achieving the closest
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Fig. 1 Comparison of the estimated Fp,p, (fraction of carbon
remaining after 100 years) from Woolf et al. (2021) using their
two-pool model and the Fy.,, calculations with the C1 carbon
pool intentionally set to zero. This comparison demonstrates
almost perfect alignment with the parity line, indicating that the C1
pool is irrelevant in the model. The results suggest that the Foe,
estimates are effectively governed by a single carbon pool decay,
despite the nominal use of a two-pool model

fit to the empirical data for carbon decay observed over
time during the incubation experiments. However, the
crucial question remains: to what extent does this divi-
sion reflect the actual chemistry of biochar? Specifically,
what proportion of the observed carbon loss during each
incubation experiment can be attributed to the labile
fraction of biochar, and what proportion can be attrib-
uted to the recalcitrant fraction of biochar?

The most recent published metadata compilation
of incubation studies by Azzi et al. (2024), which also
includes those in Woolf et al. (2021), shows that the total
carbon loss during the incubation of biochar produced
at temperatures between 350 °C and 800 °C ranges from
15% to 1%, respectively. Additionally, recent metadata of
75 biochar samples published by Sanei et al. (2024) and
its update (unpublished) for biochar produced at the
same temperature range of 350 °C to 800 °C indicates that
their measured labile carbon fraction varies from 16% to
1%, respectively. The total carbon loss during incubation
experiments is therefore likely to be always within or less
than the actual labile carbon fraction of biochar sam-
ples. Therefore, the incubation experiments to date have
measured either entirely or predominantly the degrada-
tion rates of the labile fraction of the biochar.

This has significant implications for interpreting the
incubation results. Given that the total carbon loss dur-
ing multi-year incubation experiments is attributed
entirely to the decay of the labile fraction of biochar, the
decay rates of the recalcitrant fraction remain empiri-
cally unknown due to the relatively short duration of the
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reported experiments thus far. Consequently, the pro-
jected F,,, data by Woolf’s model and later compilations
(Azzi et al. 2024; Rodrigues et al. 2023) reflect the per-
manence of only the labile fraction of biochar. The esti-
mates of permanence based on such models significantly
underestimate the true permanence of biochar. This find-
ing aligns with and explains the discrepancies and prob-
lems outlined by Sanei et al. (2024) regarding the Woolf’s
model.

Sanei et al. (2024) argued that biochar, thermodynami-
cally considered on par with some of the most stable
forms of organic carbon, should exhibit much greater
permanence. If the performance of biochar was as short
as suggested by current models, it would imply that sur-
face processes are so strongly oxidizing that no organic
matter could persist long enough to transition to geo-
logical stages. This contradicts the abundant presence of
natural fossil charcoal in geological rocks found in vari-
ous depositional environments (Scott 1989, 2000), par-
ticularly in shallow and surface outcrops of sedimentary
rocks that contain significant amounts of preserved char-
coal (ICCP 2001; Sanei et al. 2024 and references therein).

3 The disconnect between the current model

and biochar chemistry
As mentioned earlier, there is a general consensus that
biochar contains roughly two fractions: labile and recal-
citrant carbon (Lehmann et al. 2015; Woolf et al. 2012).
These fractions are quantified through analytical tech-
niques, such as proximate analysis (volatile matter ~
labile fraction; fixed carbon % recalcitrant) or other ther-
mal analyses (labile versus refractory; Petersen et al. 2023;
Sanei et al. 2024), or by direct spatial measurement of the
percent inertinite in a biochar sample using reflected
light microscopy (Sanei et al. 2024). It is also generally
accepted that the relative proportion of labile to recalci-
trant fractions decreases with increasing degrees of car-
bonization, aromatization, and condensation of organic
molecules, resulting from higher production tempera-
tures and/or longer heating residence times (Carr and
Williamson 1990; Morga 2011; Wiedemeier et al. 2015;
Budai et al. 2017; Zhang et al. 2017; Liu et al. 2020; How-
ell et al. 2022; Sanei et al. 2024). The fractionation of the
C1 and C2 proportions in Woolf ’s model should follow
the same general trend rooted in the chemistry of biochar
that defines its carbon stability.

A critical question regarding Woolf’s model is whether
the estimated decay of biochar aligns with the fundamen-
tal chemistry of the biochar used in the incubation stud-
ies. One way to investigate this is by examining how the
relative proportions of the two carbon fractions (C1, C2)
vary in biochar samples produced at different pyrolysis
temperatures. Biochar produced at higher temperatures
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is expected to have lower H/C ratios and a higher pro-
portion of the C2 fraction, reflecting an increased degree
of carbonization.

Figure 2 illustrates the relationship between the C2
fraction and both production temperature and molar
H/C ratio for all modeled biochar samples from the
Woolf et al. (2021) meta-analysis. These plots aim to
investigate how production temperature and carboniza-
tion level influence the distribution of recalcitrant, C2
carbon fraction in biochar.

Contrary to expectations, the results show no correla-
tion between the C2 fraction and either production tem-
perature or H/C ratio. Across a wide range of production
conditions, the C2 fraction fluctuates randomly between
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95% and 100%, regardless of production temperature or
H/C ratio. Notably, there is no observable distinction
in the C2 fraction between biochars produced at lower
temperatures (<400 °C; H/C>0.8) and those produced at
higher temperatures (> 600 °C; H/C<0.4).

The absence of a clear relationship between the
assigned C2 fractions and the degree of carbonization in
Woolf’s model indicates a misalignment with the estab-
lished chemistry of biochar. This discrepancy undermines
the validity of the model, as proper parameterization of
a decay model must be rooted in a robust understand-
ing of the chemical processes governing carbon degra-
dation and stability. Specifically, biochar produced at
higher pyrolysis temperatures should exhibit greater
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Fig. 2 a Relationship between the recalcitrant, C2 fraction and production temperature (the pyrolysis temperature at which biochar is produced).
b Relationship between the C2 fraction and the H/C molar ratio across the entire dataset from the Woolf et al. (2021) meta-analysis of modeled
biochar samples. These plots indicate that neither production temperature nor the atomic H/C molar ratio has a significant influence on the degree
of carbonization in biochar, as reflected by the size of the recalcitrant (C2) carbon fraction in the Woolf model. This observation contradicts

the chemical expectation that increased carbonization, driven by higher pyrolysis temperatures, should systematically decrease the H/C molar ratio

and increase the recalcitrant carbon fraction size in biochar
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carbonization, characterized by a smaller proportion of
labile carbon and a larger recalcitrant fraction (C2).

4 Recommendations for improving biochar
permanence models

To address challenges in biochar carbon permanence
models, we proposed several recommendations to
improve their accuracy and reliability. A revised multi-
pool decay model remains a suitable framework for pre-
dicting biochar permanence, provided it is parameterized
to reflect the chemical properties of biochar accurately.
Key considerations for this revised model include the
need for accurate parameterization, where the model
incorporates precise proportions of labile (C1) and recal-
citrant (C2) carbon fractions based on empirical data.
This requires comprehensive chemical analysis of biochar
samples to determine their exact composition. Addition-
ally, the model should be calibrated using decomposition
data that capture both the rapid degradation of labile
fractions and the slower degradation of recalcitrant frac-
tions, ensuring a more accurate representation of biochar
long-term stability.

The model should also clearly differentiate between
various carbon pools within biochar, potentially expand-
ing beyond the simple two-pool model to include multi-
ple fractions that reflect the complex nature of biochar
degradation. Moreover, the model should account for
production variables such as production temperature and
H/C ratios, which significantly influence the composition
and stability of biochar. This allows the model to be tai-
lored to specific types of biochar, thereby improving its
predictive accuracy.

In addition to revising the multi-pool model, alterna-
tive approaches should be employed to complement and
validate the model, especially in the absence of long-term
incubation data. These approaches include accelerated
aging studies, which simulate long-term environmental
conditions in a shorter timeframe and can provide valu-
able data on the long-term stability of both labile and
particularly recalcitrant carbon fractions.

Detailed physicochemical characterization, such as
spectroscopy, chromatography, and microscopy, should
be conducted to understand the structural and compo-
sitional characteristics of biochar. This information can
refine model parameters and enhance the accuracy of
carbon stability predictions. Furthermore, molecular
models that simulate the molecular structure and deg-
radation pathways of biochar can offer insights into the
long-term behavior of different carbon fractions, helping
to predict how biochar interacts with soil components
and environmental factors over extended periods.

Finally, integrating data from incubation experiments,
accelerated aging studies, physicochemical analyses, and
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molecular models can create a comprehensive dataset.
This integrated approach ensures that the model reflects
the complex interactions and long-term stability of bio-
char in various environmental contexts.

By adopting these recommendations, future models
can more accurately predict the long-term permanence
of biochar carbon in soil, providing reliable estimates for
its role in carbon management and climate mitigation
strategies.

5 Conclusion

Our critical review of the commonly used two-pool expo-
nential decay methodology, based on a meta-analysis
of over 100 incubation experiments compiled by Woolf
et al. (2021) and subsequent studies, reveals significant
shortcomings in current biochar permanence models.

This model theoretically divides total carbon loss dur-
ing incubation into labile carbon (C1) and recalcitrant
carbon (C2) fractions, with C1 assigned a higher decay
rate (K1) than C2 (K2) to account for the heterogeneous
composition of biochar. However, in the current imple-
mentation, the proportion of C1 relative to C2 is so low
that the model effectively functions as a single-pool
model. Empirical carbon loss observed during incuba-
tion primarily reflects the degradation of the labile frac-
tion, as the degradation of permanent fraction cannot
be distinguished during the experiments. Consequently,
the model inaccurately assumes biochar is predominantly
composed of the labile fraction, applying an incorrect,
higher decay constant to almost the entire biochar mass.
This results in a gross overestimation of the decay rate for
the largely inert recalcitrant fraction.

Furthermore, the proportion of the recalcitrant C2
fraction assigned to biochar samples in Woolf’s model
exhibits no correlation with production temperature or
H/C ratio. This observation challenges the well-estab-
lished principle that higher production temperatures and
increased carbonization typically lead to a greater rela-
tive proportion of the recalcitrant fraction. The disparity
between the meta-data and the expected chemical behav-
ior of biochar’s labile and recalcitrant fractions under-
scores a critical limitation in current models, highlighting
their inability to accurately represent the long-term car-
bon sequestration potential of biochar. This has signifi-
cant implications for biochar certification and climate
policy (European Commission 2022, 2024), highlighting
the need for more robust models that account for the
complex nature of biochar degradation, and presence of
a fraction with decomposition rate so low that it cannot
be reliably measured in incubation studies lasting only a
few years.

Addressing these issues involves using a revised multi-
pool decay model that is appropriately parameterized to
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reflect the chemical properties of biochar and calibrated
with decomposition data that capture both labile and
stable fractions. In the absence of long-term incubation
data, this approach should be complemented by com-
bining incubation data with accelerated aging studies,
physicochemical characterization of biochar, and molec-
ular models to ensure accurate predictions of biochar
permanence.
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